| 算式 | markdown |
分数,平方 | \frac{7x+5}{1+y^2} | \frac{7x+5}{1+y2} |
下标 | z=z_l | z=z_l |
省略号 | \cdots | \cdots |
开根号 | \sqrt{2};\sqrt[n]{3} | \sqrt{2};\sqrt[n]{3} |
矢量 | \vec{a} \cdot \vec{b}=0 | \vec{a} \cdot \vec{b}=0 |
微积分 | | | |
| \int ^2_3 x^2 {\rm d}x | \int 2_3 x2 {\rm d}x |
| \iint | \iint |
| \iiint | \iiint |
| \oint | \oint |
| \mathrm{d} | \mathrm{d} |
| \prime | \prime |
| \lim | \lim |
| \infty | \infty |
| \partial | \partial |
| \sum | \suml |
| \int ^2_3 x^2 {\rm d}x | \int 2_3 x2 {\rm d}xl |
极限 | \lim_{n\rightarrow+\infty} n | \lim_{n\rightarrow+\infty} nl |
累加 | \sum \frac{1}{i^2} | \sum \frac{1}{i2}l |
累乘 | \prod \frac{1}{i^2} | \prod \frac{1}{i2}l |
矩阵
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix} \tag{1}
带括号的矩阵
\left[
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix} \right]\tag{2}
对数函数
算式 | markdown |
\ln15 | \ln15 |
\log_2^{10} | \log_2^{10} |
\lg7 | \lg7 |
运算符号
运算符 | markdown |
±\pm | \pm |
× | imes |
÷ | \div |
∑ | \sum |
∏ \prod | \prod |
≠ | \neq |
≤ | \leq |
≥ | \geq |
大写 | markdown | 小写 | markdown |
A | A | α | \alpha |
B | B | β | \beta |
Γ | \Gamma | γ | \gamma |
Δ | \Delta | δ | \delta |
E | E | ϵ | \epsilon |
ε | \varepsilon |
Z | Z | ζ | \zeta |
H | H | η | \eta |
Θ | \Theta | θ | heta |
I | I | ι | \iota |
K | K | κ | \kappa |
Λ | \Lambda | λ | \lambda |
M | M | μ | \mu |
N | N | ν | \nu |
Ξ | \Xi | ξ | \xi |
O | O | ο | \omicron |
Π | \Pi | π | \pi |
P | P | ρ | \rho |
Σ | \Sigma | σ | \sigma |
示例
\begin{aligned}
a_0&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\,\mathrm{d}x\\[6pt]
a_n&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos nx\,\mathrm{d}x=\\
&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}x^2\cos nx\,\mathrm{d}x\\[6pt]
b_n&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin nx\,\mathrm{d}x=\\
&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}x^2\sin nx\,\mathrm{d}x
\\[6pt]
\end{aligned}
分段函数
f(x) = \left\{
\begin{array}{lr}
x^2 & : x < 0\\
x^3 & : x \ge 0
\end{array}
\right.
u(x) =
\begin{cases}
\exp{x} & \text{if } x \geq 0 \\
1 & \text{if } x < 0
\end{cases}
方程组
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
线性模型
h(\theta) = \sum_{j = 0} ^n \theta_j x_j
均方误差
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
批量梯度下降
\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
推导过程
\begin{aligned}
\frac{\partial J(\theta)}{\partial\theta_j}
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
\end{aligned}
case环境的使用
a =
\begin{cases}
\int x\, \mathrm{d} x\\
b^2
\end{cases}
带方框的等式
\begin{aligned}
\boxed{x^2+y^2 = z^2}
\end{aligned}
最大(最小)操作符
\begin{gathered}
\operatorname{arg\,max}_a f(a)
= \operatorname*{arg\,max}_b f(b) \\
\operatorname{arg\,min}_c f(c)
= \operatorname*{arg\,min}_d f(d)
\end{gathered}
求极限
\begin{aligned}
\lim_{a\to \infty} \tfrac{1}{a}
\end{aligned}
\begin{aligned}
\lim\nolimits_{a\to \infty} \tfrac{1}{a}
\end{aligned}
求积分
\begin{aligned}
\int_a^b x^2 \mathrm{d} x
\end{aligned}
\begin{aligned}
\int\limits_a^b x^2 \mathrm{d} x
\end{aligned}
求累加
\begin{aligned}
\sum_{n=1}\nolimits' C_n
\end{aligned}
求累乘
\prod_{{
\begin{gathered}
1\le i \le n\\
1\le j \le m
\end{gathered}
}}
M_{i,j}
开根号
\sqrt x * \sqrt[3] x * \sqrt[-1] x
省略号的使用
{1+2+3+\ldots+n}